
a Fermi National Accelerator Laboratory 

FERMILAB-PUB-89/71-T 

Multifractality of Inelastic Events 

Igor M.Dremin 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinois, U.S.A. 

Permanent address: 

P.N.Lebedev Physical Institute, Moscow, U.S.S.R. 

March 10, 1989 

Abstract 

The multifractal approach to multiparticle processes at high ener- 
gies is advocated. It provides the quantitative measure of lnhomogene- 
ity of particles’ positions in the phase-space volume. Its relationship 
to intermittency and large fluctuations is briefly discussed. 

1 Introduction and main ideas 

With the advent of SSC and nuclei colliders we are entering the new era of 
tremendous multiplicities with high statistics. The adequate Monte-Carlo 
simulation becomes sophisticated and,even more important, the data ban- 
c&g and presentation is not so clear and transparent. One should look for 
simple quantitative measures to compare theory and experiment. 

At present, any classification of multiple production processes stems from 
prejudices inspired by numerous theoretical models. Even being correct, they 
often suffer from controversies and insufficiently strictly defined borderlines 
between different physical phenomena. In some way, it seems to be an in- 
evitable consequence of such a classification. Thus one speaks about pioniza- 
tion, fragmentation, inelastic diffraction, jets, spikes etc. Nevertheless, with 
all its shortcomings, this classification is very useful. 
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I propose to look upon inelastic processes from a somewhat different point 
of view[l,2]. Namely, they can be considered as purely geometrical objects 
and, correspondingiy, classified as such ones. This mathematical approach 
provides some quantitative criteria. Being applied to the same physical pro- 
cesses, both classifications should add to each other and, I hope, to our 

understanding of the dynamical origin of different phenomena. 
To decipher these statements, let us treat an inelastic event as a set 

of points (in the three-dimensional momentum space) each of which corre- 
sponds to the end-point of the momentum vector of a particle produced. One 
can ask whether the sets for different events can be described by any mea- 
sure and classified according to it. Actually, the similar problems appeared 
when treating purely mathematical objects like the Cantor set or solving 
some non-linear physical problems with strange attractors. The generalized 
fractal dimensions were proposed to be used for the description of such ob- 
jects. Fractality provided some new insights into their nature (for the review, 
see[3]). 

Inspired by the analogy, I propose to apply the fractal dimension tech- 
nique to multiparticle production processes. As explained above, their ge- 
ometry is defined by the dynamics involved. The most far-reaching program 
includes the classification of individual events according to their dimension 
what helps to reveal the underlying dynamical mechanisms. Our hope for 
a success is supported by the fact that all nowadays-popular models of soft 
multiparticle production use the cascading dynamics which,as well known, 
can be characterized as a self-similar branching process with definite fractal 
dimensions. 

Independently of our theoretical prejudices, any classification is impor- 
tant by itself. In our case, we hope to learn about the substructure of inelastic 
events, their fluctuations, related to intermittency and, possibly, to the spa- 
tial inhomogeneity of the regions of energy concentration during the collision. 
The measure singularities are defined by the dynamics and they are impor- 
tant for understanding of the non-linearity of effective equations governing 
the process. 

With these goals in mind, we shall proceed through the mathematical 
interlude to physical definitions and concrete measures of inelastic processes 
(with simplest applications of them) to be proposed for experimentalists deal- 
ing with multiple production. At this stage there are no final recipes and 
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the whole procedure is still developing. The hope for its success is based on 
positive experience gained in many applications to other branches of physics. 

2 The mathematical interlude 

The fractal dimension can be considered as a generalization of a notion of the 
commonly used topological dimension to non-integer numbers. If the latest 
one is defined as the number of independent directions which characterize 
the object, it is hard to imagine the non-integer dimension. However, one 
can use another definition due to Kolmogorov or Hausdorff. According to it, 
the fractal dimension DF is defined as a value which provides the finite limit 

0 < lim,,&(e)Pp < m (1) 

to the product of the minimal number of covering the object hypercubes IV(E) 
with a size 1 = E (Kolmogorov definition) or I 2 e (Hausdorff definition) and 
of a factor 8~ when c + 0. 

It becomes more apparent for physicists if one considers the relation be- 
tween the size of an object 1 and its mass M as a scaling law: 

M - ID’. (2) 

For usual objects it coincides with the topological dimension (for a line DF = 
1, for a square DF = 2 etc) 

Now, let us consider the so-called Koch curve (Fig.1). It is built up 
according to the following algorithm. One splits the straight line interval 
into three equal pieces, builds up the equilateral triangle on the middle piece 
and omits this piece. The whole procedure is repeated on four intervals left 
and so on. The resulting self-similar curve is a fractal with the dimension 
DF = In4/ln3 which is easily calculated according to eq.(2). 

If one just omits the middle pieces without building up the triangles, one 
gets the so-called Cantor set (Fig.2) of the infinite number of points with the 
dimension DF = ln2/ln3. 

The probability pi(l) to be in one of the hypercubes N(I) is proportional 
to lD~ at small 2. Therefore the sum of their koments for a fractal is given 

c P:(l) - I@“( DF = cmst) 
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The multikactals generalize the notion of fractals since for them 

p:(l) w l@(q) (4) 

where 

4(n) = q&+1. (5) 

d q+l are called the Renyi dimensions[4] and depend on Q (generally, they are 
decreasing functions of 4 for multifractak[3]). 

The rough analogy of the transition from fmctals to multifractals is the 

replacement of a homogeneous stick by an inhomogeneous one when one haa 

to change the mass definition by introducing its measure--the density distri- 

bution p(z): 

M= 
I ,‘p(z)d= (6) 

The deficiency of this analogy is the absence of the self-similarity. 
What concerns the multifractals, the probability to be in the hypercube 

N;(Z) is defined now by 

Pi(l) = 
/ N;(i) dw(z) (7) 

where du(z) is the natural measure. Let us group alI the boxes with the 
singularity Cx (pi(l) - l”, 1 + 0) into a subset S(a). Q is called a local mass 
dimension. The number of boxes dN,(Z) needed to cover S(a) is 

dN,(I) = dp(a)l+) (8) 

where f(a) is a fractal dimension of the set S(a) and it is related to Renyi 
dimension. One gets: 

N.(I) 
2 p:(l) N / dp(4~“q-f(“) 

wherefrom one gets by the saddle-point method: 

d, = & +n(aq - f(a)) = &(fi4 - f(6)) 

with h defined from the equation: 
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The notion of the Renyi dimension generalizes the fiactal dimension: 

dg = DF = -4(-l), (12) 

the information dimension: 

d, = D, = 4’(O), 

the correlation dimension: 
d, = v = 4(l) 

with DF > D1 > I, (i.e. dd,/dq < 0). 

What can be revealed by the dimension analysis? 

(13) 

(14) 

a The number of the degrees of freedom of a system nf is given by the 
integer part of the fractal dimension 

nf = (DF] + 1 (15) 

l The measure singularities f(a) are determined from the formula (10). 

a The kactal dimensions are related to the non-linearities of the underly- 
ing dynamical equations. However, this relation is indirect and usually 
is established by computer calculations. 

l It can provide some knowledge about the regions of the most active 
energy dissipation, intermittency and the kactal space-time structure 
of the interaction region (for example, in the quark-gluon plasma). 

a The properties of the cascade models are closely related to the Renyi 
dimensions of the cascades. 

l The last but not the least to us is an attempt to use dimensions for 
classification of inelastic processes which is described below. 



3 The multifractal classification of inelas- 
tic processes 

The multifractal approach is widely used[3] in many branches of physics- 
turbulence, spin glasses, strange attractors, cloud formation, percola- 
tion, polymers etc. 

The idea to apply it to multiple production [1,2] was inspired by the 
similarity with strange attractors. Let us consider any inelastic pro- 
cess with many hadrons produced as a set of points within the three- 
dimensional phase-space volume. Each particle corresponds to the end- 
point of its momentum vector. One can ask whether these sets can be 
classified in a similar way to classification of strange attractor’ points 
or like a Cantor set i.e. as geometrical objects with the geometry given 
by the dynamics. 

To simplify the initial stage, I propose to consider the projection of the 
sets on the rapidity y axis. Then the probabilities pi(Z) can be defined 
in the following way: 

Pi(l) = &Ce(‘-lYi-YYjl) 
I#% 

where n is the multiplicity of an event, y;,j are the vapidities of particles 
i, j (normalized to the maximum available rapidity interval). For an 
n-particle event, the moments are wrtitten as 

Cd9 = i $Pf(O = i glC& ze(l - IYi - Yjl))q 
I-1 

(17) 

and at small 1 should behave as 

c,(z) a [Q(q) z +I. (18) 

Ideally, the definite Renyi dimension should be ascribed to each event 
and all events can be classified according to the values of the dimen- 
sions. 

In practice, there arise some complications. First of all, the mathemat- 
ical procedure is valid at n -+ CC while we have to deal with events at 
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finite multiplicities n which are not yet large enough. The only remedy 
is to use as high muitiplicities as possible. 

Second, as for any physical system one can not consider the mathemat- 
ical limit 1 4 0 but should stop at the values of I which are physically 
meaningful. (For example, for usual objects one is not allowed to use 
the size close to the molecular sizes.) On the other side, the lengths 
close to the maximal value also have nothing to do with the fractal 
dimensions. Therefore, the choice of the “meaningful range” of 1 to de- 
termine the Renyi dimensions depends on our intuition and experience. 

As an example how to overcome the difficulties, let us consider two in- 
elastic events of ppinteraction at 400GeV/c with 20 charged particles 
produced. One of them is rather homogeneous on the (pseudo)rapidity 
axis while another one is a representative of the so-called “ring” or 
“spike” events where many particles are grouped nearby. The mo- 
ments C,(I) drastically differ for them (see Fig.3) with a rather smooth 
behavior for the homogeneous event (number 1 in Fig.3) and more ir- 
regular shape for the ring event (number 2). Both of them do not obey 
the simple scaling law (17) in the whole region of 1 but satisfy it in 
the restricted region of 2 from .2 to .4. If one chooses a “meaningful 
interval” near the point I, = . 3 one gets completely different values of 
the Renyi dimensions for the two events ranging from almost 1 for the 
homogeneous event to about .l in second case. They provide the quan- 
titative measures for our definition of the homogeneous (spread along 
the line) and spike (concentrated near the point) events. Whether the 
q-dependence of the Renyi dimensions (Fig.4) is a signal of multifractal- 
ity or an artifact of the finite multiplicity should be studied separately 
but first possibility seems preferable. The height of the plateau and its 
starting point (at I N .2 in Fig.3) show the strength and the width of 
the spike. 

Thus we see how the proposed method is used for a separation of 
homogeneous and spike events. One needs larger statistics of high- 
multiplicity events to classify them according to the proposal. Some 
preliminary resuIts[5] are shown in Fig.5 for n+p-interactions at 250GeV/c. 
The distributions of the whole set of events with 10 charged particles 
and of the spike events over the correlation dimension d2 differ strongly 
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from each other as expected. They are rather stable within the mean- 
ingful interval of I. 

Let me note that alternative (but not so simple, in my opinion) meth- 
ods can be used. In particular, those are the studies of the behavior of 
multiplets of points on the rapidity axis[l,3] or the multiplicity depen- 
dence of moments of intervals between neighbors[6>7,8]. In the latest 
case, one defines the moments 

P,(n) = kg b;imi, I- (19) 

of the minimal distances in rapidities 

J;,min = m$Yi - Yi-1; Yi+l - Yi). (20) 

According to [6] they should behave as 

P,(n) N n-T/Dh) (21) 

with 
D(y = (1 - q)d,) = d,. (22) 

Therefore if one chooses events with the same values of d, for different 
multiplicities n1 and nz and calculates P,(n) at the values 7 = ( l-n)dp 
one gets the relation without any free parameter: 

1 (Pdnl) 
n j$-p(~) = 1 - q. (23) 

It would be a powerful relation if it did not suffer from some diseases 
common to the whole method. It is valid for pure multifiactals obeying 
the law (17) in the whole region of rapidities while the real events show 
up such a behavior in rather narrow “meaningful” interval (see Fig.3). 
One can not apply the method at 7 < 0 if two particles have equal 
rapidities, but it can be easily generalized to the distances in the three- 
dimensional phase space. Anyway, some generalization of the simplest 
procedure (18)-(22) is needed. 

I would like to stress once again that the proposed method is aimed 
at classification of individual events to use afterwards the subsets with 
different dimensions separately while other methods exploit an inclusive 
approach. 
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4 General discussion 

It has been shown above that the Renyi dimensions can be used to sep- 
arate the spike events from the whole set of data. Combined with other 
methods of spike identification, they can provide deeper understanding 
of the events substructure. 

Evidently,there should exist some correlation between the Renyi dimen- 

sion and intermittency(91. Oneis tempted to assume that intermittency 
becomes larger at smaller Renyi dimensions. It would be appealing to 
verify it experimentally. 

In macroscopic problems, large fluctuations are commonly related to 
inhomogeneities within the space volume and to non-linearities of the 
underlying dynamical equations. In our case there seems to be no 
straightforward way to such a conclusion. However, some arguments 
in favor of it are provided by very complicated motion of exchanged 
partons[lO] and by the polymer-like model of the vacuum due to in- 
stantons[ll]. 

Another interesting problem related to the non-linearity of the dynam- 
ical equations is whether the basic dynamics is stochastic or regular. 
The fluctuations should appear randomly for stochastic processes and 
could prefer definite positions in regular dynamics (as happens, for ex- 
ample, for Cherenkov gluons[l2]). The preliminary results of our anal- 
ysis of spike positions in ppintcractions at 205GeV/c and 360GeV/c[5] 
show some irregularities over the smooth background i.e. possible co- 
existence of both mechanisms (see Fig.6). 

To conclude, there is some hope that quantitative characteristics of 
inelastic processes provided by the multifractal analysis can shed some 
light on the dynamics of hadron interactions and I would appeal to 
experimentalists to be innovative in correlation measures and to pay 
more attention to fluctuations in multipartide production. 

I would like to thank the Fermilab Theoretical Physics Department for 
the hospitality. 
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